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Since the appearance of the first 
studies on the 13C-nmr spectra of apor- 
phines ( 1,2), several tabulations of car- 
bon chemical shifts have been published 
for a large number of aporphinoids (3-5). 
Some useful relationships between struc- 
ture and chemical shifts are stated 
explicitly in these papers, and others can 
be deduced from the tables and from a 
more recent listing of the properties and 
occurrence of these compounds (6). 
Perusal of these tables reveals that out of 
more than 60 aporphinoid 13C-nmr 
spectra reported only 9 represent the 
four possible ring-D monooxygenation 
patterns. 

As a considerable amount of zenkerine 
El] had been isolated a decade ago in our 
laboratory and partially characterized 
(7) ,  we decided to attempt its purifica- 
tion from the remnants of the Isolona zen- 
keri (Annonaceae) fractions from which 
it was originally obtained with the hope 
of being able to determine at least the 
sign of its optical rotation and its 13C- 
nmr spectrum. The successful purifica- 
tion of zenkerine allowed this modest 
goal to be reached, and also the 13C anal- 
ysis of the previously unknown 0- 

R' R6 R'O 
1 H H CH, 
2 CH, H CH, 
3 H CH, CH, 
4 CH, CH, CH, 
5 H CH, H 
6 CH, CH, H 

methylzenkerine f21, of pulchine (N- 
methylzenkerine) E31 isolated from 
Ocoteu pulchella (Lauraceae) (8) ,  and of 
1,2,10-trimethoxyaporphine E41 iso- 
lated from Thalictrum foliolosum (Ranun- 
culaceae) (9) .  

Although the free base of zenkerine is 
rather unstable and could only be ob- 
tained as a highly colored glass, it was 
possible to determine its optical rotation 
at 589 nm. It proved to be levorotatory, 
and its absolute configuration is, there- 
fore, 6a(R) (lo), establishing it as a 
biogenetic derivative of (R)-coclaurine 
presumably via crotsparine and spar- 
siflorine. Therefore, the N-methyl- 
crotsparine which co-occurs with zen- 
kerine in I .  zenkeri (7) most probably be- 
longs to the same stereochemical and 
biogenetic series. 

The 13C-nmr chemical shifts of com- 
pounds 1-4 are listed in Table 1. Reso- 
nances were assigned by correlation with 
published values (3,5) and by 'H off-re- 
sonance decoupling experiments. On 
comparing the aromatic ring carbon re- 
sonance assignments given in the litera- 
ture for l -hydroxy-2 -methoxyapor- 
phines it became apparent that refer- 
ences (3) and (5) disagree with regard to 
the chemical shifts of C-lb and C-3a. 
Severini Ricca and Casagrande (3) based 
their attempted identification of the C- 
l b  signal on the upfield shift expected 
for the carbon resonances upon protona- 
tion of the nitrogen atom. Unfortu- 
nately, these authors did not carry out 
any direct comparisons of the 13C-nmr 
spectra of base-salt pairs, but relied on 
the spectra of four salts, two of which 
correspond to noraporphines, another to 
a dehydroaporphine, and the last to a 7-  
hydroxyaporphine. Considering all 
these structural variations with regard to 
the aporphine bases tabulated in their 
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TBLE 1. I3C-nmr Chemical Shifts of Communds 1-6 and of the Hvdrochlorides of 1 and 4 

Atom 

c -  1 
c-2 
c - 3  
C-3a 
C- la 
C-lb 
c -4  
c -5  
C-6a 
c -7  
C-7a 
c -8  
c - 9  
c -  10 
c-11 
C- 1 la 
N-Me 
I-OMe 
2-OMe 
10-OMe 

5" 

141.6 
146.5 
110.2 
122.9 
119.4 
127.5 
28.4 
52.8 
62.5 
33.6 

126.0 
127.9 
113.2' 
155.3 
115.4' 
133.0 
43.5 

55.7 
- 

- 

6' 

144.3 
151.3 
111.6 
128.6d 
125.9 
127.7d 
28.7 
52.5 
62.3 
33.5 

126.6 
128.4 
114.0' 
155.7 
114.5' 
132.1 
43.5 
59.6 
55.5 
- 

l b  

141.5 
145.9 
110.1 
123.9 
119.1 
129. Id 
28.9 
43.2 
53.8 
36.5 

128.7d 
128.1 
112.4' 
159.2 
114. le 
133.3 
- 
- 
56.1' 
55.2' 

Compounds 

2 b  

145.0 
152.0 
111.8 
128.Sd 
126.4 
127.6d 
29.0 
43.0 
53.7 
36.4 

128.2d 
128.2 
113.2' 
158.4 
113.5' 
132.9 

60.1 
55.7' 
55.2' 

- 

3b 

141.4 
145.7 
109.5 
123.8 
119.3 
128.2d 
28.8 
53.3 
62.6 
34.0 

127.9d 
128.2 
112.4' 
158.2 
114.0' 
133.1 
43.8 

56.0' 
55.2f 

- 

4 b  

145.1 
152.0 
111.3 
128.4d 
126.8 
127.Sd 
28.9 
53.1 
62.5 
34.8 

127.Sd 
128.4 
113.1' 
158.5 
113.7' 
132.8 
43.6 
60.2 
55.7' 
55.3' 

1-HCF 

142.9 
148.1 
110.9 
121.2d 
119.0 
121.9 
24.7 

52.2 
32.3 

125.1 
128.7 
112. le 
158.2 
115.1' 
132.9 

2 

- 
- 

56.2' 
55.2' 

4-HCIc 

147.3 
152.9 
112.2 
126.7d 
1 2 5 . 9  
118.3 
25.6 
5 1.4 
61.4 
30.0 

1 2 5 . 9  
129.3 
113.5' 
158.6 
113.5' 
131.9 

60.9 
5 6 . 6  
55.2' 

2 

'Data from Severini Ricca and Casagrande (3), revised; 25.2 MHz, DMSO. 
b20MHz, CDCI,. 
'20 MHt, DMSO-d,. 

d.e.fAssignments interchangeable within columns. 
gObscured by solvent signal. 

study, we were unable to find any clear- 
cut distinction between the chemical 
shifts of C-lb and C-3a. On the other 
hand, Jackman et ai. (5) used relaxation 
time measurements, selective irradia- 
tion experiments, and comparisons of 
the spectra of aporphines with different 
substitution patterns to obtain a coher- 
ent set of assignments that has generally 
been taken as a standard by the authors 
of more recent papers. 

We have recorded the 13C-nmr 
spectra of the hydrochlorides of 1 and 4 
(Table 1) as examples of a l-hydroxy-2- 
methoxynoraporphine and a 1,2-di- 
methoxyaporphine. The assignment of 
the C-7a resonance is reached unam- 
biguously by considering relaxation 
times ( 5 ) ,  and this atom, like C-3a, lies 
three bonds away from the nitrogen and 
belongs to an aromatic ring. Although 
both situations are not strictly identical, 
it seems reasonable to assume that the 
I3C-nmr signals of C-3a and C-7a should 

be displaced to a similar extent by N- 
protonation. In the cases of 1 and 4 we 
found that N-protonation shifts the C-7a 
resonance upfield by 3.6 and 1.9 ppm, 
respectively. Basing our assignments on 
reference ( 5 ) ,  the C-3a signals appear 
shifted upfield by 2.7 and 1.7 ppm, in 
agreement with our assumption, while 
the C- l b  peaks are much more strongly 
displaced 7.2 and 9.2 ppm upfield. If we 
use the work of Severini Ricca and 
Casagrande (3) as the basis of our assign- 
ments, the C-3a resonances undergo 
large upfield shifts and the signals attri- 
buted to C- Ib  are only weakly displaced. 
The report of Jackman et af. ( 5 ) ,  there- 
fore, leads to a much more reasonable 
distribution of protonation shifts. If the 
C- 1 phenolic function is methylated, 
Jackman et a/. (5) indicate that the meta- 
carbon signals (C-lb and C-3) are hardly 
displaced at all, and the para-carbon 
peak (C-3a) undergoes a downfield shift 
of 4.9 to 5.0 ppm. Severini Ricca and 
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Casagrande (3) suggest that the para- 
resonance should be practically un- 
changed as a result of 0-methylation, 
and the two mfa-carbon signals should 
be displaced downfield to very different 
degrees: C-3 by 0.9 to 1.8 ppm and C- 
l b  by 5 .1  to 6.0 ppm. We view such a 
situation as quite unlikely. Taking both 
N-protonation and 0- 1-methylation 
shifts into account, we believe that all 
the C-lb and C-3a assignments in Seve- 
rini Ricca and Casagrande (3) for l-hy- 
droxy-2-methoxyaporphines (caaverine, 
lirinidine, apoglaziovine, isoboldine, 
and bracteoline) ought to be inverted. 
As apoglaziovine 157 and nuciferoline 
167 share the 1,2,10-ttioxygenation pat- 
tern with compounds 1 to 4 ,  we have in- 
cluded the pertinent I3C-nmr data in 
Table 1 for comparison. 

It now becomes possible to analyze 
the changes produced in the 13C-nmr 
spectra of this group of alkaloids by 
methylation of the phenol group at C- 
10. The ipso-(C-lO) peak moves down- 
field by 2.8 to 2.9 ppm, both ortho-(C-9 
and C- 1 1) signals undergo upfield shifts 
of less than 2 ppm, the mfa-(C-8 and C- 
1 la) resonances are virtually unchanged, 
and the para-(C-7a) peak is displaced 
downfield by 0.9 to 2.2 ppm. A similar 
analysis of the 0-methylation displace- 
ments in the 13C-nmr spectra of apor- 
phines with a single ring-D oxygen atom 
at C-9, although necessarily based on 
less data (6) ,  suggests that the chemical 
shifts of these compounds are also rather 
insensitive to this structural change. It is 
worth noting that the 0-methylation 
shifts predicted empirically for simple 
phenols are quite small, particularly at 
the mta- and para-positions (1 1,12). 
The 13C-nmr behavior of the aporphines 
with ring-D monooxygenation at C-9 or 
C-10 would, thus, seem to be in line 
with that of relatively uncrowded 
phenols, as 0-methylation should not 
introduce any major change in the con- 
jugation of the oxygen atom with the 
aromatic ring. A similar situation can be 
predicted for aporphines with a single 

oxygen atom on ring D at C-8 or C- 1 1. 
On the contrary, downfield O-methyla- 
tion shifts of several ppm should be ex- 
pected for the 13C resonances of the 
atoms para with regard to the hydroxyl 
group in the cases of 8-hydroxy-9-sub- 
stituted, 3-hydroxy-2-substituted, and 
ring A- and D-trisubstituted apor- 
phines. Here, replacement of the phenol 
hydrogen atom should result in torsion 
of the aryl-oxygen bond, and as a result 
of this, greater localization of the oxygen 
lone electron pairs, decreased electron 
density at the ring positions, and, there- 
fore, relative deshielding of the carbon 
nuclei, particularly ortho and para with 
regard to the modified phenol function, 
as has already been suggested for l-hy- 
droxy-2-methoxy- and 1 l-hydroxy- 10- 
methoxyaporphines (5). This hypothesis 
should clearly be checked experimen- 
tally and, in view of the pharmacological 
importance of some aporphine deriva- 
tives, points to the potential interest of 
quantum-chemical studies of the elec- 
tronic structure of these compounds. 

EXPERIMENTAL 
GENERAL EXPERIMENTAL PROCEDURES.- 

Analytical tlc was carried out on silica-gel pre- 
coated foils; preparative chromatography was ef- 
fected on silica gel, either with precoated plates 
(0.5 mm thickness) or on "flash" columns; 
CH2C12-Me0H-NH40H (90:9: 1) was used as 
eluent in every case, saturating the tlc chamber 
with NH, vapor. 'H-nmr spectra were recorded 
at 60 MHz in CDCI, with TMS as internal refer- 
ence. I3C-nmr spectra were recorded at 20 MHz 
in CDCI, or DMSO-d, (for the salts). 

(-)ZENKERINE [I].-Amorphous, purple- 
red solid, [c1]~~D-99" ( F O .  10 MeOH); 'H nmr 
6 3.80 s (3H, Me0-2 or -IO), 3.86 s (3H, MeO- 
10 or -2), 6.57 s ( l H ,  H-3), 6.73 dd]=8.0; 2.5 

8.02 d]=2.5 Hz ( l H ,  H-11); I3C nmr 6 in 
Table 1. 

(-)-~-METHYI.ZENKERINE [2].-Zen- 
kerine, dissolved in MeOH, was methylated with 
CH2N2 in E t 2 0  at 5". The major product was 
separated by column chromatography: dark 
brown, glassy solid; 'H nmr 6 3.68 s (3H, MeO- 
l), 3.79s(3H, Me0-2 or -IO), 3.83 s(3H, MeO- 
10 or -2), 6.63 s ( l H ,  H-3), 6 .78 ddJ=8.0; 2.5 

HZ ( l H ,  H-9), 7.13 d]=8.0 HZ ( l H ,  H-8), 

HZ ( l H ,  H-9), 7.16 d ]=8.0 HZ ( l H ,  H-8), 
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8.10 d J=2.5 Hz ( lH,  H-11); I3C nmr 6 in 
Table 1. 

(-)-PULCHINE [3].--Zenkerine was N- 
methylated with HCHO-NaBH4 in MeOH. The 
dark, glassy product was purified by column 
chromatography: [ a ) ” D -  130’ ( F O .  10, 
MeOH); ‘H nmr 6 2.52 s (3H, N-Me), 3.81 s 
(3H, MeO-2or-10), 3.84s(3H, MeO-lOor-2), 
6.59s(lH,H-3),6.79ddJ=8.0;2.5Hz(lH, 
H-9), 7.20 d J=8.0 Hz ( l H ,  H-8), 8.06 d 
J=2.5 H z ( l H ,  H-11); ‘3Cnmr6inTable 1. 

( - )- 1,2, 10-TRIMETHOXYAPORPHINE [4). 
0-Methylzenkerine was N-methylated with 
HCHO-NaBH4 in MeOH. Glassy solid, [cx]*~D 
- 169” ( ~ 0 . 1 0 ,  MeOH); ‘H nmr 6 2.54 s (3H, 
N-Me), 3 .68s(3H,  MeO-l), 3.82s(3H,MeO-2 
or -lo), 3.87 s (3H, MeO-10 or -2), 6.63 s ( IH,  

J=8 .0Hz( lH,  H-8), 8.03dJx2.5 H z ( l H ,  H- 
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